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Superlattice is a periodic structure of layers of two or more materials. Typically the width 

of layers is orders of magnitude larger than the lattice constant, and is limited by the 

growth of the structure[1].  As shown in the figure below, it is a superlattice formed by 

alternating AlAs and GaAs layers. Because they have the similar lattice constant and 

different bandgap. 

 
Fig. 1 

Usually there are two different ways of forming superlattice structure[2]: periodic 

variation of donor or acceptor impurities, periodic variation of alloy composition 

introduced during the crystal growth. In the first method, the electrons and holes are 

confined in different locations, thus reducing the recombination possibility. However, 

this method has large thermal diffusion of impurities, so it is hard to maintain the periodic 

potential profile. So the second method is more popular. 



       
Fig. 2 

It is worthy to make a difference between superlattice and multiple quantum well because 

they are very similar in their structure except that unlike the multiple quantum well, the 

superlattice barrier width is small enough that the different quantum wells are coupled 

with each other. As shown in the Fig. 3[5] 

 
Fig. 3 

 In contrast, the quantum wells in multiple quantum well structure are highly localized. 

This difference will result in the difference in their carrier conduction mechanisms. 

Superlattice Schrodinger Equation 
For the square potential well, we could apply the Kronig-Penney model[3] to solve for 

the Schrodinger Equation (SE). And the sinusoidal potential, the wave function has the 

form of Mathieu’s equation[4]. Here for simplicity, the Kronig-Penney model is 

considered.  

 



Fig. 4 
Figure 4 shows the periodic potential with period d = a + b .  It has the form 

V x( ) = 0 − b < x < 0
Vo 0 < x < a
⎧
⎨
⎩  

So that the SE could be written 

 

d 2ψ
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+ 2mE
2

ψ = 0 0 < x < a

d 2ψ
dx2

+
2m E −Vo( )
2

ψ = 0 − b < x < a
 

Then the solutions would be 

 

ψ 1 = Ae
iαx + Be− iαx 0 < x < a

ψ 2 = Ce
βx + De−βx − b < x < 0

α = 2mE


β =
2m Vo − E( )
  

Applying the Bloch theorem 

ψ x + d( ) = eikdψ x( ) d = a + b  
and the boundary condition 

ψ 1 0( ) =ψ 2 0( ) ψ '
1 0( ) =ψ '

2 0( )
ψ 1 a( ) = eikdψ 2 −b( ) ψ '

1 a( ) = eikdψ '
2 −b( )  

we can get the final equation 

               

β 2 −α 2

2αβ
sinh βb( )sin αa( )− cosh βb( )cos αa( ) = cos k a + b( )( )

             (1) 

Plotting the two sides of the equation,  



 
Fig. 5 

 
The solutions suggest discrete energy bands separated by the forbidden bands just as the 

conventional crystal structure energy band. But the difference of superlattice and 

conventional crystal is that it is a man-made material that the energy band could be well 

controlled by the selected layers and with of different layers. Because of their thick 

alternating layers compared with the lattice constant, the energy bands form in the first 

brillouin zone of the well. As shown in the Fig. 6[2] 

 
Fig. 6 

The first brillouin zone boundary is π
a

, and is subdivided into many minibands. And 

these minibands is the key feature of superlattice. 
 

Superlattice Carrier Transport 
 



In this part, the carrier transport in superlattice is considered. There are three types of 

transportation[5]: the miniband conduction, the Wannier-Stark hopping and the resonant 

sequential tunneling as shown in Fig. 7. 

 
Fig. 7 

Miniband Conduction 
The equations of motion are[2] 

                                             
 

dkx
dt

= eF, vx =
1

∂Ex

∂kx
                                       (2) 

Assuming the superlattice grows in the x-direction. And the increment of velocity in a 

time interval would be 

 
dvx =

eF
2

∂2Ex

∂k2x
dt  

Taking the scattering time into consideration 

 

vd = exp −t /τ( )
0

∞

∫ dvx

= eF
2

∂2Ex

∂k2x0

∞

∫ exp −t /τ( )dt
 

Define 
 
γ = Vo

Eo

, Eo =
2k2d
2m

, kd =
π
d

, then  

For large γ , the E-k relationship is approximately sinusoidalEx ≈
E1
2
1− cos kxd( )( ) , and 

for small γ , the approximation is on longer valid and is approximated by two parabolas 
of opposite curvature, joined at the inflection point Ei ,ki( ) . 
 



According to these approximations we could get 
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kd
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⎦
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Plotting the magnitude function g ξ( ), f ξ( ) in figure 8. 

 
Fig. 8 

There is an interesting behavior here, which shows that at certain electric field, the drift 

velocity reaches the maximum, and then decreases with the increasing electric field. 

Because the drift velocity is directly proportional to the current, the miniband transport 

shows the negative differential conductance. 

 
Sequential Resonant Tunneling 

In sequential resonant tunneling[6], the wave functions of different quantum wells are 

weakly coupled that the miniband transport is not applicable.  One schematic illustration 

is shown in Fig. 9. 

 



Fig. 9 
If the applied electric field is just to make the E1 level in the n th quantum well matches 

the E2 level in the n +1 th quantum well, then the resonant sequential tunneling reaches a 

maximum. If the applied electric field is increased further, that the E1 level in the n th 

quantum well matches the E3 level in the n +1 th quantum well, then the tunneling 

reaches another maximum. These process could be shown in Fig. 10 

 
Fig. 10 

The photocurrent reaches maximum when the miniband levels match. 

 
Superlattice Application 

Superlattice has many applications. Here only two applications are presented: the Bloch 

Oscillator and the Quantum Cascade Laser. 

 
Bloch Oscillator 

The equation of motion is presented in equation (2),  suppose tight bonding model, the E-

k relationship is sinusoidal 

 
E = Acosak⇒ v k( ) = − Aa


sinak  

Then 

 
x t( ) = v k t( )( )dt∫ = − A

eF
cos aeF


t⎛

⎝⎜
⎞
⎠⎟  

it shows that the position is oscillating at a period 



 
T = 2π

aeF
 

where a is the lattice constant. Before the superlattice, because a  is very small, so that 

the period is large compared with the scattering time, so that it is hard to observe the 

Bloch Oscillation. Now with superlattice, the periodic potential period d  could be made 

relatively big, then the oscillation period is smaller than the scattering time, so the Bloch 

Oscillator is possible. If we have d = 100A
o
,F = 103V / cm , then the oscillation frequency 

is 250GHz . That is in the THz range. So superlattice could also be used as THz source 

generator. 

 
Quantum Cascade Laser 

Another application of superlattice is the Quantum Cascade Laser[7]. It is different than 

the traditional laser in that it uses the intrasubband transitions instead of interband 

transitions used in the traditional lasers. So the quantum cascade laser is usually used in 

mid- to far-infrared portion of the electromagnetic spectrum. Figure 11 illustrates this 

process 

 
Fig. 11 

In Fig. 11, it shows the intrasubband transitions. And another important property is that in 

the intrasubband transitions, the carriers are not recombined and disappear, instead they 

still reside in the quantum well and could be further transported.  

 

Conclusion 



In this project, the superlattice is reviewed. Two different formation methods are 

introduced and comparison is made between them. Morever, the Kronig-Penney model is 

applied to solve the Schrodinger Equation, and we get the minibands in the original first 

Brillouin Zone. And three different carrier transport mechanisms are introduced. And the 

minibands transport and sequential resonant tunneling are examined in detail. 

Interestingly, the negative differential conductance behavior is found. Lastly, two 

applications of superlattice are presented. The Bloch Oscillator is very important, and so 

is the quantum cascade laser. 
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